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Abstract The free energy profile and the (classical)
kinetics of chemical reactions in (soft) condensed phase
may be well modelled theoretically by means of molecu-
lar dynamics simulations, the perturbed matrix method
(PMM) and statistical mechanics, as we provided in pre-
vious articles. In this paper, we describe the theoretical
framework, discussing thoroughly its crucial points, and
apply the model to an important biochemical reaction:
the Haem carbon monoxide binding–unbinding reac-
tion in Myoglobin, specifically investigating the reaction
step involving the carbon–iron chemical bond formation
(disruption) which is of particular biochemical interest.
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1 Introduction

One of the ultimate goals of theoretical–computational
chemistry is the reliable modelling of chemical reactions
in complex molecular systems. Among them, chemical
reactions in proteins, because of the wide range of po-
tential applications, probably represent the most appeal-
ing ones. When a biochemical reaction in a protein
is concerned, the most serious problem to be faced is
no longer, nowadays, the mechanical description of the
macromolecular system, which can be addressed at rea-
sonable computational cost using a certain number of
approximations and computational tools [1–3]. Rather,
the real technical–conceptual bottleneck is represented
by the tremendous complexity of the configurational
space accessible, at atomic level, by the overall system
(including the solvent). Moreover, there is a further
aspect which is to take into account. Beyond showing
an intrinsic physical consistency, any valuable theoreti-
cal–computational approach must provide a reasonable
model of the chemical reaction investigated. Hence, a
comparison with experimental data is a necessary, and
sometimes sufficient condition for validating a com-
putational–theoretical method. For chemical reactions
occurring within proteins, the typical experimental data
available are kinetic measurements, i.e. macroscopic
thermal rate coefficients. This aspect reinforces the com-
plexity of the problem as macroscopic kinetic data arise
from the average over an ensemble of trajectories in
configurational space and cannot be treated through
a simple and restricted mechanical–dynamical view. In
this context, we have recently proposed a theoretical–
computational approach [4] which is essentially devel-
oped within the statistical–mechanical framework by the
use of the perturbed matrix method (PMM) [5–14] and
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molecular dynamics (MD) simulations. The main aim
of this approach is a rigourous evaluation of the free
energy landscape for a given chemical event [12] and
its use, within a diffusive model, for determining the
relative rate coefficients. Such a model has been recently
applied for a relatively simple reaction in solution [15].
In this paper, we show the theoretical framework of the
model, discussing its fundamental features, and use such
a method to describe in detail an important biochemical
reaction. In particular our aim is the determination of
the free energy landscape and related rate coefficients,
for the Haem carbon monoxide (CO) binding–unbind-
ing in Myoglobin (Mb). Such a reaction has received,
in the last decades, an impressive deal of attention un-
der a variety of experimental techniques [16–22]. From
such experiments the CO–Mb binding reaction has been
characterized as CO diffusion within Mb leading to a
Haem–CO geminate pair eventually interconverting to
the Haem–CO covalent complex. This last reaction step
became, in the last years, one of the most investigated
biochemical processes by means of computational–theo-
retical methods. Recent quantum chemical calculations,
restricted to the isolated Haem–CO system, have defi-
nitely shown [23–25], that CO binding occurs upon spin
inversion (quintet-singlet). More recently, a variety of
computational attempts have been presented in order
to describe such a reaction including, at different level
of approximation, the protein-solvent effects [26–29].
However, such data are typically based on either a sim-
plified description of the environment (e.g. using a mean
field model or a very limited environment configura-
tional sampling) or on a drastic simplification of the
quantum mechanical description of the reaction centre
(e.g. using semiempirical Hamiltonian terms) resulting
often in an unreliable description of the chemical reac-
tion. The PMM/MD model seems then very suited for
combining a rather accurate quantum description of the
electronic rearrangement in the reaction centre with an
extended atomic configurational sampling, hence open-
ing to the possibility of a complete equilibrium and
non-equilibrium statistical mechanical description of a
chemical reaction.

2 Theory

Defining with rn the nuclear coordinates of the quantum
centre (QC) (i.e. the system treated quantum mechani-
cally) and x the coordinates of the atoms providing the
(classical) perturbing field we can write, within certain
approximations [6,8], the QC electronic (perturbed)
Hamiltonian matrix as

H̃(rn, x) ∼= H̃0(rn) + qTV(r0, x)Ĩ + Z̃1(E(r0, x), rn)

+�V(rn, x)Ĩ (1)

where H̃0(rn) is the unperturbed Hamiltonian matrix
which can be constructed carrying out standard elec-
tronic structure calculations on the isolated QC, V(r0, x)

and E(r0, x) are the (perturbing) electric potential and
electric field at a given QC r0 position (typically the
mass or geometrical centre), Z̃1(E, rn) is a perturba-
tion matrix explicitly given by [Z̃1]l,l′ = −E · 〈�0

l |µ̂|�0
l′
〉
,

�V(rn, x) approximates the perturbation due to all the
higher order terms as a simple short-range potential and
qT is the QC total charge. Moreover, �0

l are the unper-
turbed (electronic) Hamiltonian eigenfunctions and all
the matrices used are expressed in this unperturbed ba-
sis set. At each MD frame, the electric potential and
field exerted by the environment can be evaluated (typ-
ically using the environment atomic charge distribution)
and the perturbed Hamiltonian matrix constructed and
diagonalized. Hence, a trajectory of the QC perturbed
Hamiltonian eigenvalues and eigenvectors is obtained.
Such calculations carried out along the reaction coor-
dinate provide, within certain approximations and for
a highly diluted QC [4], the reaction free energy and
whatever electronic property at a generic reaction coor-
dinate position η (for the sake of simplicity, we con-
sider a single reaction coordinate). According to the
theoretical model described in the previous paper [4],
the (Helmholtz) free energy change for the reaction
coordinate transition ηref → η (providing the reaction
standard chemical potential �µ� as in our calculation
the QC density is invariant along the transition) and
the average value of an electronic property χ at the
position η, are

�A(η) = �µ�(η) ∼= −kT ln
〈
e−β�(ε′+qTV)

〉0

ηref
(2)

〈χ(η)〉 ∼=

〈
e−β�(ε′+qTV)χ(η)

〉0

ηref〈
e−β�(ε′+qTV)

〉0
ηref

(3)

In the previous equations, ε′ is the (ground state)
eigenvalue of H̃0 + Z̃1 and �(ε′ + qTV) provides the
energy change, for each MD frame, due to the transition
along the reaction coordinate and in principle obtained
energy minimizing the QC internal quantum degrees
of freedom. Moreover, the subscript ηref and the zero
superscript mean that the averages are performed in
the statistical ensemble with constrained reaction coor-
dinate (at the reference position ηref) and the system
is in its vibrational ground state. The previous expres-
sions are correct within the approximation that a small
reactant to product displacement along the reaction
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coordinate, does not affect the quantum vibrations and
(classical) mass tensor determinant [4]. Moreover, for a
rather rigid QC (i.e. where all the internal coordinates
except the reaction coordinate may be treated as har-
monic quantum degrees of freedom) we may consider
that for each accessible configuration �(ε′ + qTV) is a
function only of the reaction coordinate, i.e. it is inde-
pendent of the other QC internal coordinates, and hence
only the energy minimized structures along the reaction
coordinate (obtained in vacuo) are necessary to provide
the unperturbed properties for PMM calculations [4]. It
is worth noting that in order to define a proper (single)
reaction coordinate for describing the kinetics of the
chemical process and not only its thermodynamics, we
need to use a classical degree of freedom such that all
its orthogonal coordinates are well equilibrated during
its relaxation.1 Hence, it is possible that according to the
initial conditions of the kinetic relaxation (i.e. the coor-
dinates/observables equilibrated at the beginning of the
process) and the exact definition of the reactant and
product states, different reaction coordinates should be
used. This clearly also implies that a certain variation of
the reaction free energy profile is possible, as a conse-
quence of the different choice of the reaction coordinate
and hence of the orthogonal planes used to obtain the
corresponding free energy. In principle, each of these
reaction coordinates, if properly defined, should pro-
vide the correct kinetic relaxation for the correspond-
ing process. In the present study, we consider the iron
to carbon distance as the proper reaction coordinate,
hence assuming that the kinetic (classical) relaxation
along such a degree of freedom occurs with all the other
degrees of freedom equilibrated, i.e. the kinetics may
be modeled as a diffusion along the free energy sur-
face. Note that for a highly diluted solute, including the
QC, the reaction free energy is independent of the sol-
ute roto-translational coordinates [4] and the solvent,
provided an initial equilibrium condition, is expected to
relax instantaneously in the ensemble of reactive trajec-
tories at each reaction coordinate position [15].

When we consider systems where the reactant to
product transition is relatively large and/or a quantum
transition is involved (in the Haem–CO binding the
spin transition), it may be worth evaluating the cor-
rection term providing the free energy change at η,
due to the possible variation of the vibrational energies

1 In this paper, we do not consider reactive processes which may
relax faster or at a similar rate than the environment as they typi-
cally may occur at very high temperature. However, for molecules
involving slowly relaxing internal coordinates, it is possible that
such slow modes must be somehow included in the definition of
the reactive surface in order to describe properly the kinetics of
the reaction and not only its thermodynamics.

and (classical) mass tensor determinant from the cor-
responding values at ηref [15]. Assuming, as usual, the
partition function as factorized into a semi-classical part
and a quantum vibrational one (given by the product of
the molecular vibrational partition functions) and con-
sidering rigid solvent molecules (water) with hence a
coordinate independent classical mass tensor, we may
express such a free energy term �AI(η), for systems
where all of the QC internal coordinates orthogonal
to the reaction coordinate may be treated as harmonic
(quantum) degrees of freedom, as [4,30]

�AI(η)

= −kT ln
Qv,η

∫
e−β[�(x,η)+�Uv,0(x,η)][det M̃(η)]1/2 dx

Qv,ηref

∫
e−β[�(x,η)+�Uv,0(x,ηref)][det M̃(ηref)]1/2 dx

(4)

where Qv,η, Qv,ηref are the QC molecular quantum vi-
brational partition functions including all the orthogo-
nal internal degrees of freedom, obtained at η and ηref,
respectively, and x are the environment (classical) coor-
dinates. Moreover, M̃(η) and M̃(ηref) are the mass ten-
sors associated to all the QC classical coordinates (i.e.
rototranslational and reaction coordinates) as obtained
at η and ηref, � is the (classical) potential energy of the
system and �Uv,0 is the system vibrational ground state
energy shift from a reference value [4,30], typically neg-
ligible. Note that for a system where the quantum centre
is a subpart of a molecule the previous vibrational parti-
tion functions and mass tensors should refer in principle
to the whole molecule (solute). However, approximat-
ing the complete solute vibrational partition function
and mass tensor determinant as the product of the QC
and the rest of the solute parts, we may still use in the
last equation the QC partition function and mass tensor
determinant, thus simplifying considerably the calcula-
tions. Note also that the use of the QC complete classi-
cal mass tensor determinant implies that, as required in
Eq. 4, we deal with the unconstrained ensemble [4].

Using the approximation �Uv,0(x, η) ∼= �Uv,0(x, ηref)

we then obtain, for the perturbed QC,

�AI(η) ∼= −kT ln
Qv,η

Qv,ηref

− kT
2

ln
det M̃(η)

det M̃(ηref)
(5)

providing

�A(η) = �µ�(η) ∼= −kT ln
〈
e−β�(ε′+qTV)

〉0

ηref

−kT ln
Qv,η

Qv,ηref

− kT
2

ln
det M̃(η)

det M̃(ηref)
(6)

where the QC vibrational partition function along
the reaction coordinate can be in general obtained via
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the corresponding in vacuo frequencies, i.e. we consider
the unperturbed frequencies as the reference frequen-
cies used in the definition of the vibrational partition
function [4,30]. Note that within the approximations
used to obtain �AI , no corrections are needed for the
χ average.

A straightforward extension of the previous relations
provides the reaction free energy for the Haem–CO
binding–unbinding reaction in Mb, involving the quintet
to singlet or singlet to quintet spin transition (the triplet
is energetically unstable and hence can be neglected, see
Methods). In fact for such a kind of reaction, we may
write the free energy along the reaction coordinate rel-
ative to a given reference condition, e.g. the Haem–CO
covalent complex where the quintet is virtually unacces-
sible, and appropriate to describe the reaction process, as

�A(η) = −kT ln
e−βAs(η) + e−βAq(η)

e−βAs(ηref) + e−βAq(ηref)

∼= −kT ln
e−βAs(η) + e−βAq(η)

e−βAs(ηref)

= −kT ln
[
e−β�sA(η) + e−β�qA(η)

]
(7)

�sA(η) = As(η) − As(ηref) (8)

�qA(η) = Aq(η) − As(ηref) (9)

providing, with the use of Eq. 6,

�A(η) ∼= −kT ln

[
Qv,s,η

Qv,s,ηref

〈
e−β�s(ε

′+qTV)
〉0

ηref ,s

+ Qv,q,η

Qv,s,ηref

〈
e−β�q(ε′+qTV)

〉0

ηref ,s

]

−kT
2

ln
det M̃(η)

det M̃(ηref)
(10)

where the subscripts s, q refer to the singlet and quintet
magnetic state, respectively,

�s(ε
′ + qTV) = ε′

s(η) − ε′
s(ηref)

+ qT [V(r0(η)) − V(r0(ηref))]

�q(ε′ + qTV) = ε′
q(η) − ε′

s(ηref)

+ qT [V(r0(η)) − V(r0(ηref))]

are the corresponding singlet and quintet variations
from the singlet reference value and we considered the
(classical) mass tensor for a given η position as virtu-
ally unaffected by the magnetic transition. Note that we
consider as usual that, at least within the reaction time
scale, spin transitions which do not conserve the total
spin z-component may be disregarded, i.e. they are vir-
tually forbidden. Therefore in Eq. 10, we include a sin-
gle quintet term corresponding to the quintet state with
null spin z-component, hence neglecting the degener-
acy due to the other quintet states and assuming, at least
in the transition state (TS) region, that the considered
spin transition has a much faster relaxation rate than the
reaction kinetics.

Using a similar procedure, within the same level of
approximation, we may also obtain the corresponding
expression for the χ electronic property at η

〈χ(η)〉 =
e−βAs(η) 〈χs(η)〉s + e−βAq(η)

〈
χq(η)

〉
q

e−βAs(η) + e−βAq(η)

∼=
(Qv,s,η/Qv,s,ηref )

〈
e−β�s(ε

′+qTV)χs(η)
〉0

ηref ,s
+ (Qv,q,η/Qv,s,ηref )

〈
e−β�q(ε′+qTV)χq(η)

〉0

ηref ,s

(Qv,s,η/Qv,s,ηref )
〈
e−β�s(ε′+qTV)

〉0
ηref ,s

+ (Qv,q,η/Qv,s,ηref )
〈
e−β�q(ε′+qTV)

〉0
ηref ,s

It must be noted that it is often possible to define the
chemical states along the reaction coordinate such that
the corrections provided by the �AI terms are negli-
gible, by restricting the allowed fluctuation range of a
set of QC vibrational modes (i.e. constructing the cor-
responding mode partition functions considering only
the vibrational states with energies lower than a given
upper limit). This may be of particular interest when,
as for the present case, in the chemical transition con-
sidered a limited set of quantum vibrational modes may
become semi-classical anharmonic degrees of freedom,
hence not allowing a proper use of the previous equa-
tions without restricting such modes within a confined
(harmonic) fluctuation range. In such cases it is possible
to define for these modes a reaction coordinate depen-
dent fluctuation range ensuring a virtually instantaneous
relaxation of the modes during the reaction and, within
a good approximation, negligible corrections. Equation
10 thus reduces to

�A(η) ∼= −kT ln

[ 〈
e−β�s(ε

′+qTV)
〉0

ηref ,s

+
〈
e−β�q(ε′+qTV)

〉0

ηref ,s

]
(11)

which we used to evaluate the reaction free energy of
the Haem–CO binding–unbinding in Mb. Note that for
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this reaction no significant variation of the mass ten-
sor is present and only a few QC vibrational modes
involving the CO rototranslations needed to be con-
fined. Such a mode confinement, only relevant in the
geminate complex η range, simply defined the proper
geminate complex to be used in the reaction modelling.

Finally, using the reaction free energy profile and the
diffusion coefficient D of the reaction coordinate (if
available), it is possible to obtain the reaction (classi-
cal) kinetics by solving a diffusion equation [31] (DE,
see Appendix) in the reaction coordinate space

(
∂ρ

∂t

)

η

= D
kT

[

ρ
d2�µ�

dη2 + d�µ�

dη

(
∂ρ

∂η

)

t

]

+D
(

∂2ρ

∂η2

)

t

(12)

where ρ(t, η) is the probability density in η and we as-
sumed ∂D/∂t, ∂D/∂η ∼= 0.

The time–space behaviour of ρ can provide in princi-
ple all the kinetic/thermodynamic information on
the chemical reaction. Therefore, in order to schema-
tize the kinetic process, we may define three chemical
states: the TS defined by a tiny interval [ηTS − δ, ηTS + δ]
(typically about 0.1Å) centred on the reaction free en-
ergy maximum ηTS, the reactant (R) defined by one of
the η range neighbour to the TS (here the right one), and
the product (P) defined by the other neighbour η range
(here the left one). Hence, within such a scheme the
complete reaction can be described by the time depen-
dence of these three chemical state probabilities, as ob-
tained by

PTS(t) =
ηTS+δ∫

ηTS−δ

ρ(t, η) dη (13)

PR(t) =
ηU∫

ηTS+δ

ρ(t, η) dη (14)

PP(t) =
ηTS−δ∫

ηL

ρ(t, η) dη (15)

where ηL, ηU are the lower and upper limits of the reac-
tion coordinate range used to define the complete reac-
tion. Note that as the η range is finite �µ� used in
the diffusion equation must provide two infinite free
energy barriers at the extremes of such a range. These
infinite barriers do not correspond in general to physi-
cal free energy barriers, they are used simply to restrict
the reaction kinetics to the chemical step of interest.
Once we obtain PTS(t), PR(t), PP(t) by the DE solution
[15], we may construct a kinetic model via the following

procedure. Consider the general reaction scheme for the
three chemical states R, P and TS

R
k1→ TS

k−2→ P (16)

P
k2→ TS

k−1→ R (17)

and the stationary condition

ṖTS = k1PR − k−1PTS + k2PP − k−2PTS ∼= 0 (18)

PTS ∼= k1PR + k2PP

k−1 + k−2
(19)

valid for t ≥ t0 (t0 is the time interval required to achieve
the steady state), providing

ṖR ∼= −KRPR + KPPP (20)

ṖP ∼= KRPR − KPPP (21)

KR = k−2k1

k−1 + k−2
(22)

KP = k−1k2

k−1 + k−2
(23)

where KR and KP can be considered as the rate constants
for the R → P and P → R transitions, respectively.

From the obvious relation 1 = PR(t)+PP(t)+PTS(t),
we have PP(t) = 1 − PR(t) − PTS(t) and hence ∀t ≥ t0

PTS(t) ∼= (k1 − k2)PR + k2

k−1 + k−2 + k2
(24)

ṖR ∼= −KPR + K′ (25)

K = k1k−2 + k1k2 + k2k−1

k−1 + k−2 + k2
(26)

K′ = k2k−1

k−1 + k−2 + k2
(27)

The general solution of the previous ordinary linear
differential equation is, in the time range t ≥ t0,

PR(t) ∼= PR(∞) + [PR(t0) − PR(∞)] e−K(t−t0) (28)

PR(∞) = K′

K
= k2k−1

k1k−2 + k1k2 + k2k−1

From the last expressions, we readily obtain (using again
PP(t) = 1−PR(t)−PTS(t) and the stationary condition)

PP(t) ∼= PP(∞)

−k−1 + k−2 + k1

k−1 + k−2 + k2
[PR(t0)−PR(∞)] e−K(t−t0)

(29)

PP(∞) = k−1 + k−2 − (k−1 + k−2 + k1)PR(∞)

k−1 + k−2 + k2
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= k1k−2

k1k−2 + k1k2 + k2k−1

PTS(t) ∼= PTS(∞)

+ k1 − k2

k−1 + k−2 + k2

[PR(t0)−PR(∞)] e−K(t−t0) (30)

PTS(∞) = (k1 − k2)PR(∞) + k2

k−1 + k−2 + k2

= k1k2

k1k−2 + k1k2 + k2k−1

It is also instructive to consider two special cases of this
general model. If we deal with a reaction where k2 ∼= 0
then we have K ∼= KR = k1k−2/(k−1 + k−2) and

PTS

PR

∼= k1

k−1 + k−2
(31)

corresponding to a simple steady state for the R → P
reaction alone. This case is typical in systems where the
free energy of the product is much lower than the reac-
tant one or the product is instantaneously removed in
some way (e.g. in enzymatic reactions). When k2, k−2 ∼=0
we obtain a further condition with K ∼= k1k−2/k−1 and
PTS/PR ∼= k1/k−1 which clearly corresponds to a pre-
equilibrium between the R and TS species, as required
by the Eyring theory. However, this last case is rather
unusual as k−2 is typically larger than or of the same
order of k−1 when k1 
 k2, and hence the Eyring the-
ory should not be used as a general model to describe
chemical reactions.

3 Quantum chemical calculations and molecular
dynamics simulations

All the quantum chemical calculations on the isolated
His–Haem–CO complex, i.e. our quantum centre (see
Fig. 1), were carried out using the Gaussian 98 [32] and
Gamess US [33] packages. The reaction coordinate, i.e.
the iron-carbon (Fe–CO) distance, was used to define a
6 points grid starting from the unperturbed potential en-
ergy minimum (located on the singlet surface at 1.8Å).
Such a grid was used to evaluate the unperturbed (i.e. in
vacuo) minimum energy structures up to 3.8 Angstrom
Fe–CO distance. This procedure was performed for the
singlet, quintet and triplet magnetic states. The triplet
however, resulting systematically much higher in energy,
was neglected in our PMM calculations. This procedure
was carried out in the framework of Density Functional
Theory using Becke’s three parameters [34] exchange

Fig. 1 Quantum centre used in our PMM calculation (reaction
centre), defined by the Haem–CO complex and including the
proxymal Histidine side chain. The figure refers to the reference
QC condition, i.e. with the Haem–CO distance at 1.8Å

and the Lee et al. [35] correlation functionals (B3LYP)
in conjunction with different atomic basis sets: for iron
atom we used the Effective Core Potential from Los
Alamos and a double-zeta basis set for the core and va-
lence electrons, respectively; for the atoms bound to iron
(four nitrogens and CO) the triple zeta 6-311++G(p,d)
basis set was used and, finally, for the remaining atoms
we used the 6-31G basis set. In order to apply PMM at
each structure of the above reaction path, the electronic
ground and the first nine excited energies as well as the
corresponding (transition) dipoles, were then obtained
carrying out Configuration Interaction with Single and
Double excitations (CISD) using as reference state (ref-
erence Slater determinant) the one obtained by the
previous B3LYP ground state evaluation. Such calcula-
tions provided the unperturbed Hamiltonian eigenstates
defining the basis set used to construct the perturbed
Hamiltonian matrix, which was then diagonalized for
each simulation frame, at each Fe–CO distance leading
to the reaction free energy and related properties. For
this purpose N,V,T MD simulations were performed at
300 and 293 K, constraining Mb–CO in the centre of the
simulation box, filled with 6,741 simple point charge [36]
water molecules, at a liquid density (49.1 mol/l) deter-
mined by an initial 1.0 bar isobaric–isothermal equili-
bration run. All the simulations were performed using
the Gromacs package [37–39]. Note that no experimen-
tal kinetic data for the reaction studied are available at
300 K and therefore, in order to somehow compare with
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experimental rate constants, we decided to investigate
this reaction at the closest temperature with available
experimental data, i.e. at 293 K. The parameters describ-
ing the His–Haem–CO force field for the reference
condition used in the MD simulations (i.e. the singlet
Haem–CO covalent complex of the unperturbed QC)
were determined as follows: the charges were recalcu-
lated adopting fitting procedures from previous B3LYP
calculations [40]; for the other non-bonding and all the
bonding interactions, we used the parameters contained
in the Gromos force field [39] designed for similar atoms.
Bond lengths were constrained by LINCS [41] and the
rototranslational constraints [42] were used to keep the
Mb–CO rototranslationally fixed at the centre of
the simulation box. The temperature was kept constant
using the isokinetic temperature coupling [43] in order
to obtain results fully consistent with statistical mechan-
ics [44] and the time step was of 2 fs. The long range elec-
trostatics was calculated using the particle mesh ewald
(PME) method [45], with 34 wave vectors in each dimen-
sion and a fourth order cubic interpolation. After the
initial equilibration we used 10-ns runs to collect the
data. In order to explicitly evaluate the (classical) kinet-
ics of the Haem–CO binding (provided by the diffusion
along the reaction free energy surface, using as initial
condition a probability density confined in the energy
minimum of the R state), we first evaluated the diffu-
sion coefficient associated to the chosen reaction coor-
dinate, i.e. the carbon–iron distance. For this purpose we
performed (by Gromacs) two 110 ps MD trajectories at
constant energy (i.e. with no temperature coupling) of
the system, utilizing unconstrained bond lengths (with
the corresponding Gromacs stretching parameters) and
thus a reduced time step of 0.1 fs, starting from a MD
frame of the 10-ns simulations either at 300 or 293 K
(i.e. with the isokinetic temperature coupling), chosen
so that its total energy was virtually identical to the value
obtained by averaging over the corresponding 10-ns sim-
ulation. For the rest, these simulations were performed
identically to the previous ones. Note that in both sim-
ulations the first 10 ps were considered as equilibration
and hence removed from the analysis. Using a large
number of (constant energy) trajectory subparts starting
close to the carbon–iron equilibrium distance, we eval-
uated the reaction coordinate diffusion coefficient via
the corresponding computed carbon-iron distance mean
square displacement in time. Note that for a fast veloc-
ity autocorrelation function relaxation, as in the present
case where the diffusive regime is achieved within a few
femtoseconds, the use of a constant energy simulation
to evaluate the diffusion coefficient is physically more
consistent than using a constant temperature one. The
obtained diffusion coefficient (about 4.2 10−3 nm2/ps)
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Fig. 2 Singlet and quintet reaction free energy surfaces, as
obtained by PMM using the 293-K MD simulation

was then utilized to solve (numerically) the diffusion
equation (note that we assume a reaction coordinate
independent diffusion coefficient which then may be
obtained considering only the Haem–CO covalent com-
plex ensemble). Finally, another constant temperature
MD simulation (20 ns) was performed at 300 K for a sys-
tem identical to the previous one except for the distal
Histidine protonation site. In fact, in the former simula-
tions we used the protonation site (nitrogen ε) consid-
ered as the proper one by the most recent data [28,46],
while in the latter simulation we used the nitrogen δ

protonation site previously considered as the correct
one [47,48] and hence utilized in Mb MD simulations
up to very recent years. This was done to evaluate the
possible effects of the distal Histidine protonation site.

4 Results and discussion

In Fig. 2, we show the reaction free energy for the sin-
glet and quintet surfaces (i.e. �sA, �qA) as obtained
by PMM and MD simulations as described in the pre-
vious sections. Note that this figure refers to the data
obtained by the 293-K MD simulation (distal Histidine
protonated at nitrogen ε site). As for all the other sim-
ulations the reaction coordinate (i.e. Fe–CO distance)
was fixed at 1.8Å (i.e. corresponding to the reference
Haem–CO covalent complex). Similarly to the results
for the isolated QC [25], the TS of the reaction in Mb
is determined by the singlet–quintet free energy surface
crossing. The triplet surface is thermodynamically too
unstable to affect the reaction and, therefore, we omit-
ted such a surface in our calculations. Interestingly, the
perturbed QC free energy absolute minimum, at about
2.0Å, is slightly shifted from the unperturbed one (our
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Table 1 Free energy barriers as obtained by different MD/PMM
conditions as well as from in vacuo claculations

Ensemble Binding barrier (kJ/mol) Unbinding
barrier (kJ/mol)

MD/PMM 300 K 43.8 ± 0.6 74.1 ± 0.9

MD/PMM 293 K 41.9 ± 0.6 74.2 ± 0.9

MD/PMM 300 K 41.4 ± 0.4 76.3 ± 0.7
δ protonation site
DFT vacuum 47.6 87.6

The noise shown corresponds to a standard deviation

reference condition) indicating a corresponding slight
variation of the Fe–CO equilibrium distance. It is also
worth to note that the perturbed reference ground state
(i.e. the perturbed singlet ground state at 1.8Å), as ob-
tained by PMM, is virtually identical to the correspond-
ing unperturbed ground state, showing that in the MD
simulations the use of the unperturbed QC reference
state atomic charges is fully consistent. In Table 1, we
show the free energy barriers as obtained from the reac-
tion free energy surfaces (Eq. 11) at the different tem-
peratures also including the corresponding values for
the isolated QC and the Mb with the distal Histidine
protonated at nitrogen δ site. From the table, it is evi-
dent that the variation of the distal Histidine proton-
ation site does not significantly affect the free energy
barriers, and the protein provides a "catalytic" effect
lowering the barriers of about 4–14 kJ/mol. Moreover,
the free energy barriers at the two temperatures are,
within the noise, almost identical suggesting low activa-
tion entropies, in line with previous results on a simple
chemical reaction in solution [15]. Note that the free
energy barriers we obtain are quite different from the
values recently provided by another computational the-
oretical attempt to model the Haem–CO binding in Mb
[49]. Such a discrepancy can be probably ascribed to the
use of a purely semiempirical classical Hamiltonian for
the reaction events which cannot properly describe the
electronic rearrangements occurring during the chemi-
cal transition. In particular the binding free energy bar-
rier reported in that article is far too small compared to
our data, probably as a result of the use of the force field
for the unbound CO [50] in the Haem–CO interaction.

In Fig. 3, we show the time dependence of the reactant
(the geminate complex) and TS probabilities, obtained
by the DE solution at 293 K. Note that in order to solve
the diffusion equation we modelled �µ�(η) by a sim-
ple polynomial function reproducing the PMM/MD free
energy barriers, minima and TS positions, and for the
system and time interval considered PR(t) − PR(∞) ∼=

PR(t), PTS(t) − PTS(∞) ∼= PTS(t) (i.e. PR(∞), PTS(∞)

are negligible). The figure demonstrates that the steady
state model described in the theory section is very accu-
rate to provide the kinetics of the reaction in terms
of a simple reactant–TS–product scheme, as typically
used to interpret experimental data. By using such time
courses as well as the reactant to TS (�A�

R = ATS −AR)
and product to TS (�A�

P = ATS − AP) free energy
differences

�A�

R = −kT ln
PTS(∞)

PR(∞)
= −kT ln

∫ ηTS+δ

ηTS−δ
e−β�A(η) dη

∫ ηU
ηTS+δ

e−β�A(η) dη

�A�

P = −kT ln
PTS(∞)

PP(∞)
= −kT ln

∫ ηTS+δ

ηTS−δ
e−β�A(η) dη

∫ ηTS−δ

ηL
e−β�A(η) dη

it is possible to obtain all the kinetic rate constants in-
volved in the reaction step studied (see theory section).
In fact, from the overall rate constant K=3.4 10−7 ps−1,
evaluated by the slope of the logarithmic reactant decay,
the TS probability at the beginning of the stationary
condition (starting after 200–300 fs) and the relations

k−1 = k1 eβ�A�
R , k−2 = k2 eβ�A�

P , we obtain the four
rate constants for the reactant–TS–product intercon-
version which then provide for the reactant to prod-
uct and inverse rate constants KR = 3.4 10−7 ps−1,
KP = 9.2 10−13 ps−1 corresponding to about 3 µs and 1 s,
respectively. Note that from our calculations KR ∼= K,
as expected by the large free energy difference between
the reactant and product states, and a rough estimate of
the error of the KR and KP rate constants, essentially due
to the noise in the free energy barriers, provides a max-
imal possible excursion (evaluated using ±4 standard
deviations of the free energy barrier) corresponding to
0.7–12.0 µs and 0.3–3.0 s, respectively. Such results can
be compared to the experimental data at 293 K [51,52],
considering that the R → P and the P → R transi-
tions are reaction steps involved in either the gemi-
nate binding kinetics (obtained after photolization of the
Haem–CO covalent complex) or in the thermal Haem–
CO dissociation. Interestingly, the experimental rate for
the dissociation process is equal to 1.9 10−14 ps−1 rea-
sonably close, within the noise, to our KP value (note
that only 9–10 kJ/mol variation in the unbinding barrier
would account for the �50 times variation of KP with
respect to the overall dissociation rate). This suggests
that in the Haem–CO thermal dissociation the P → R
transition (i.e. the Haem–CO chemical bond disruption)
is probably the rate limiting step of the whole kinetic
process, instead of the invoked slow conformational
transitions [53,22]. In fact the supposed distal Histidine
opening-closing side chain transition, often considered
as the slow conformational change involved in the reac-
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Fig. 3 Kinetics of the reactant (the geminate complex), upper
panel, and transition, middle and lower panels, states as obtained
by the DE solution for the system at 293 K

tion, results from our MD simulation data [54] as largely
equilibrated within a few nanoseconds. Note that for the
geminate binding, with an experimental rate constant of
5.6 10−6 ps−1 close to our KR, no simple comparison is
possible because of the complex non-sequential reaction
scheme involved.

5 Conclusions

In this paper, we show that a proper statistical mechani-
cal modelling of chemical reactions in complex systems
can be achieved by combining the PMM and MD simu-
lations. The extension of this method to treat chemical
events involving different quantum reaction surfaces,
introduced in the present paper, proved to be very effi-
cient to describe the kinetics of a complex biochemical
reaction: the Haem–CO geminate complex Haem–CO
covalent complex interconversion in Mb.

Remarkably, the rate constants describing the bind-
ing–unbinding reactions are roughly comparable to the
overall experimental rate constants suggesting that the
geminate complex–covalent complex interconversion
represents the rate limiting step. These results further
show that a vast variety of chemical-kinetic events,
ranging from simple reaction steps [4,12,15] to peptide
folding–unfolding interconversion [55], can be reliably
addressed in terms of diffusion over free energy surfaces.
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Appendix

Here we show, in a simple and direct way, how to obtain
the diffusion equation used in this paper.

Consider, in general, a set of reaction coordinates η

providing the kinetic relaxation of the system, i.e. all the
other degrees of freedom are assumed to be fully equil-
ibrated along the η relaxation. The equations of motion
for the η degrees of freedom when averaging over the
ensemble defined by the molecules (typically the sol-
ute molecules) within a tiny η volume (equivalent to a
numerical differential), can be approximated as
〈
π̇η(η)

〉 ∼= F(η) − �̃(t, η)
〈
πη(η)

〉
(32)

〈
πη(η)

〉 = M̃η,η(η) 〈η̇(η)〉 (33)

where πη are the η conjugated momenta, F is the sys-
tematic, i.e. equivalent to an external field, force in the η

space and �̃, M̃η,η are the friction matrix and (classical)
mass tensor block corresponding to the η coordinates.
We assumed a virtually fixed mass tensor for a given
η position and hence M̃η,η provides the only non-zero
terms of πη after averaging, as the other degrees of free-
dom are considered as fully equilibrated with hence zero
mean velocities. Within the approximation given by the
previous equations, the work due to the systematic force
only should coincide with the maximum work along the
transition, i.e. the work obtained for a reversible tran-
sition with then 〈η̇〉 = 0. Hence, for a molecule passing
from a tiny volume centred at ηa to another one centred
at ηb we can write

�A(n) =
(

∂A
∂nηb

)

+
(

∂A
∂nηa

) (
∂nηa

∂nηb

)

= µ(nηb
, ηb)−µ(nηa

, ηa)=−
ηb∫

ηa

F(η) · dη (34)

providing

F(η) = −∇ηµ(nη, η) (35)

In the last equations, A(n) is the Helmholtz free energy
of the total NVT system fully defined by the vector
n = nη1

, nη2
, . . . providing the molecular number in

each tiny volume and µ(nη, η) is the chemical poten-
tial at a given η position, i.e. within the corresponding
tiny volume. Note that the molecular number can be
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used as a continuous variable, given the fact that for any
thermodynamic property in a macroscopic system the
variation due to a single molecule is virtually equivalent
to a differential. From the definition of the chemical po-
tential and probability density in the η space ρ(t, η), we
readily have

µ(nη, η) = �µ�(η) + kT ln
nη

nηR

+ µ(nηR
, ηR) (36)

= �µ�(η) + kT ln
ρ(t, η)

ρ(t, ηR)
+ µ(nηR

, ηR) (37)

which used together with
〈
π̇η

〉 ∼= 0 (the linear regime
condition) provides

〈η̇(η)〉 ∼= −
[
�̃(t, η)M̃η,η(η)

]−1 ∇η�µ�(η)

−
[
�̃(t, η)M̃η,η(η)

]−1
kT

∇ηρ(t, η)

ρ(t, η)
(38)

Hence from the definition of the flux density vector
J(η) = ρ(t, η) 〈η̇(η)〉 and setting

D̃(t, η) = kT
[
�̃(t, η)M̃η,η(η)

]−1
(39)

we obtain, via the divergence theorem,

(
∂ρ

∂t

)

η
= −∇η ·J ∼= ∇η ·

[
D̃(kT)−1ρ∇η�µ� + D̃∇ηρ

]

(40)

This last equation, when considering a one-dimensional
η space with then D̃ = D, provides the diffusion equa-
tion used in this paper within the assumption ∂D/∂t,
∂D/∂η ∼= 0 (see theory section).
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